

Reliability of a Future Circular Collider

Peter Sollander, CERN ARW Knoxville, April 28, 2015

Thanks for input: A. Apollonio, M. Benedikt, F. Bordry, L. Bottura, P. Collier, J. Gutleber, P. Lebrun, J. Osborne, R. Steerenberg, B. Todd, S. Virtanen

Outline

- Future Circular Collider study
 - Motivation, goal and scope
 - Parameters and technology
 - The reliability work package
 - Collaboration with Tampere University of Technology
- Will not say much about
 - Geological study
 - Tunnel cross section options
 - Dipole magnets
 - Power consumption
 - Unless asked...

Motivation, goal and scope

Motivation

• European Strategy for Particle Physics 2013:

"...to propose an ambitious post-LHC accelerator project...., CERN should undertake design studies for accelerator projects in a global context,...with emphasis on proton-proton and electron-positron highenergy frontier machines....."

US P5 recommendation 2014:

"....A very high-energy proton-proton collider is the most powerful tool for direct discovery of new particles and interactions under any scenario of physics results that can be acquired in the P5 time window...."

Goal of FCC Study

- Conceptual Design Report
- By end 2018
- In time for next European Strategy Update

Scope: Accelerator & Infrastructure

FCC-hh: 100 TeV pp collider as long-term goal → defines infrastructure needs FCC-ee: e⁺e⁻ collider, potential intermediate step FCC-he: integration aspects of pe collisions

R&D Programs

Push key technologies
in dedicated R&D programmes e.g.
16 Tesla magnets for 100 TeV pp in 100 km
SRF technologies and RF power sources

Tunnel infrastructure in Geneva area, linked to CERN accelerator complex **Site-specific**, requested by European strategy

Scope: Physics & Experiments

Physics Cases

- Elaborate and document
- Physics opportunities
- Discovery potentials

Experiment concepts for hh, ee and he Machine Detector Interface studies Concepts for worldwide data services

Overall cost model Cost scenarios for collider options Including infrastructure and injectors Implementation and governance models

CERN Circular Colliders + FCC

Study time line towards CDR

Parameters and organization

Key Parameters FCC-hh

Parameter	FCC-hh	LHC
Energy [TeV]	100 c.m.	14 c.m.
Dipole field [T]	16	8.33
# IP	2 main, +2	4
Luminosity/IP _{main} [cm ⁻² s ⁻¹]	5 - 25 x 10 ³⁴	1 x 10 ³⁴
Stored energy/beam [GJ]	8.4	0.39
Synchrotron rad. [W/m/aperture]	28.4	0.17
Bunch spacing [ns]	25 (5)	25

FCC-hh Luminosity Goals

- Two parameter sets for two operation phases:
 - Phase 1 (baseline): 5 x 10³⁴ cm⁻²s⁻¹ (peak), 250 fb⁻¹/year (averaged) 2500 fb⁻¹ within 10 years (~HL LHC total luminosity)
 - Phase 2 (ultimate): ~2.5 x 10³⁵ cm⁻²s⁻¹ (peak), 1000 fb⁻¹/year (averaged)
 → 15,000 fb⁻¹ within 15 years
 - Yielding total luminosity O(20,000) fb⁻¹ over ~25 years of operation

Collaboration Status

- 51 institutes
- 19 countries
- EC participation

FCC Study Organization

Study Lead	Hadron Collider	Lepton Collider	ep Physics ,
	Physics &	Physics &	Experiment , IP
	Experiments	Experiments	Integration
M. Benedikt F. Zimmermann	A. Ball, F. Gianotti, M. Mangano	A. Blondel, J. Ellis, C. Grojean, P. Janot	M. Klein, O. Bruning
Hadron Injectors	Hadron Collider	Lepton Injectors	Lepton Collider
B. Goddard	D. Schulte, M. Syphers	Y. Papaphilippou	F. Zimmermann, J. Wenninger, U. Wienands
Accelerator	Special	Infrastructures & Operation	Costing &
Technologies R&D	Technologies		Planning
L. Bottura,	JM. Jimenez	P. Lebrun,	P. Lebrun,
E. Jensen, L. Tavian		P. Collier	F. Sonnemann

Infrastructures & Operation topics

- Geology & civil engineering
- Integration
- Electrical distribution
- Cryogenics
- Cooling & ventilation
- Transport & handling
- Installation
- Survey & alignment
- Controls
- Power/energy consumption
- Availability & reliability
- General safety
- Radiation protection

Reliability

Reliability is key for performance

- Improving component reliability soon reaches limits. Cost no longer justifies efforts
- Road to improve physics performance (integrated luminosity) is to increase

duration of fills and to reduce turnaround times

 Studies to identify key potentials and to tune investment / effectiveness at global level: LHC as basis, HL-LHC as test-bed

Operational Cycle

Should take this as a basis for FCC-hh as well and see the impact

Gross scaling : FCC-hh = 4xLHC in terms of equipment

If we assume fault time scales in the same way then, based on 2012 LHC statistics, FCC will never do any Physics!

In spite of how it looks LHC operation in 2012 was very good !!

Luminosity \rightarrow Reliability \rightarrow Design requirements

The Reliability work package

Assess if and how industrial RAMS methods can be used for the FCC

- 1. Evaluate the suitability of industrially applied RAMS methods and tools for use in particle accelerator projects
- 2. Assess benefits for the design of future accelerators
- 3. Formulate high level recommendations
- 4. Train system experts to use selected methods and tools

Tampere University of Technology knows RAMS

- Big industries
 - Statoil, Procter & Gamble, Wartsila, Kone, …
 - Integrated operations
- Military
 - F18 Hornet reliability
- Nuclear industry
 - Posiva nuclear waste management (encapsulation plant)
- ... and more
- 3.5 people strong team for FCC study

TUT made RAMS design for Finnish encapsulation plant

- 3 minutes film
- Challenges
 - First of its kind
 - Application of new and unknown technologies
 - Very high reliability required for certain operations
 - Remote handling
 - Long operation period (100+ years)

Modeling an existing accelerator will tell if the methods are applicable

- Model LHC with injectors and sub-systems
 - Collaborate with existing groups and efforts
 - Availability Working Group, Machine Protection, etc.
 - Model top-down
- Identify key contributors to downtime
- Example areas that may be interesting to study
 - Impact of injectors
 - Optimizing turn-around time (fast ramps, injection strategy)
 - Large scale technical systems (cryogenics)
 - Machine protection
 - Maintainability (100km ring)
 - •
- Feed back results to LHC, HL-LHC, other machines...

Summary

- The FCC study considers availability key to achieve requested performance
- A work package is defined for RAMS
- Tampere University of Technology has RAMS expertise and will work for the FCC study

Availability

- Work units are defined and about to start
- Findings should be useful to LHC and HL-LHC as well
- More collaborators are welcome...

Additional slides

• Location 1:

80km Jura option

- Fully housed in France
- 90% in Jura Limestones
- 10% in Molasse
- Connected to LHC
- Shafts every 10km

John 04580/rA@(027812-055)

• Location 2:

80km Lakeside option

- Housed in France and Switzerland
- 10% in Limestones (Jura, Salève)
- 90% in Molasse
- Passes under Lake Geneva
- Around the back of the Salève
- Connected to LHC
- Shafts every 10km

P. Sollander Option 2: 80km Lakeside

Push technologies to reach goals

High-field Magnets

Novel Materials and Processes

Large-scale Cryogenics

Power Efficiency

P. Sollander

Reliability & Availability

CE considerations for input into the tool : topography

Lake Crossing: Tunnelling Considerations

John Osborne (CERN-GS)

Geological data in the model

Data in the tool :

- Study area boundary
- Molasse-quaternary boundary (top of Molasse rockhead)
- Limestone-molasse boundary (molasse rockbottom)
- Limestone roof level refined with additional seismic data from BRGM, analysed by Geneva Geo Energy
- Hydrology
- **Geothermal Boreholes**
- Environmentally sensitive and protected areas
- Urban areas

GS/SE-DOP CH-1211 GENEVE 23 -Tel: central: +41 (22) 767 6111 - direct 41 (22) 767 3414

General tunnel configuration

- FCC circumference is a multiple of LHC :
 - 80 km (3.0x LHC)
 - 87 km (3.25x LHC)
 - 93 km (3.75x LHC)
 - 100 km (4x LHC)

(1a) 93km Quasi-circle

Alig	gnment	Shaft	Tools				
Cho	ose alignm	ent optic	n				
93	km quasi-cir	cular	•				
Tun	nel depth at	t centre:	299mA	SL			
Gra	dient Param	neters					
	Azin	nuth (°):	-15	5			
	Slope Angle	x-x(%):	.5				
	Slope Angle	y-y(%):	0				
			CALCU	LATE			
Alig	nment cent	re					
X:	2499812	Y:	110	5889			
LHC In	tersection		CP 1	CP 2			
	Angle						
	Depth		586m	587m			

Geol	ogy Int	tersec	ted by	/ Shaf	its Sh	aft Depth	IS	
	S	haft D	epth (I	n)		Geolo	gy (m)	
Point	Actual	Min	Mean	Max	Quaternary	Molasse	Urgonian	Calcaire
A	203		204	212			0	0
в	226							0
С	218			225				0
D	153		154					0
E	247							0
F	262			304				0
G	396	392	393	396				0
н	266		274	322				0
1	146		144					0
J	248	247						0
к	163			164				0
L	182			187				0
Total	2711	2601	2722	2867	586	2184	0	0

(2a) 100km Quasi-circle

Alig	Alignment Shaft Tools										
Cho	ose alignm	ent optic	n								
10	100km guasi-circular										
Tun	nel depth a	t centre:	263mA	SL							
Gra	dient Paran	neters)							
	Azin	nuth (°):	-20)							
	Slope Angle	e x-x(%):	.65								
	Slope Angle	e y-y(%):	0								
		[CALCU	LATE							
Alig	nment cent	tre									
X:	2499731	Y:	1108	3403							
LHC In	tersection		CP 1	CP 2							
	Angle		-64°	64°							
	Depth		218m	170m							

	S	haft D	epth (I	m)		Geolo	gy (m)	
Point	Actual	Min	Меал	Max	Quaternary	Molasse	Urgonian	Calcaire
Α	302				12	290	0	0
в	261							
С	255			257				
D	270							
Е	130		130					
F	381	367	379	389				
G	352			374				
н	232	194	230					
1	168		171					
J	313		317					
к	219		223					
L	262							
Total	3145	3017	3154	3287	501	2729	0	0

Shaft Depths

Geology Intersected by Shafts

(1b) 93km Quasi-circle

Alignme	ent Shaft	t Too	ols		Alignm	ient Lo	ocation	n						Geol	ogy Int	ersec	ted b	y Sha	fts Sh	aft Depth	າຮ	
Choose a	alignment optic	on		R	+	1005	. I to				And the state	en an Afri			S	haft D	epth (m)		Geolo	igy (m)	
93km qu	uasi-circular	•			_ 7			.50				Jan ta		Point	Actual	Min	Mean	Max	Quaternary	Molasse	Urgonian	Calcai
Tunnel e	levation at cen	tre:3	28mASL		neu -	19	* 1 A				$\dot{\mathbf{x}} : \mathcal{X}$		31 B	A	167							
					-	100	and the			ANT	1			в	182							
Gradient	Parameters			40	and a	1	1.0		9 - C - C - C - C - C - C - C - C - C -				2.94	С	154							
	Azimuth (°):		-15			S.C.	and a	2						D	88							
Slope	e Angle x-x(%):		.45					THE STREET	-		and the	Ste		F	102	179						
Slope	e Angle y-y(%):		.25					6						-	100							
		CAL	CUI ATE				21.1	AB					2	F	231			2/4				
ianmer	nt centre						t Ör		Sent C			1994 (j. 1997) 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1		G	375	370	371	375	177			
240	00812 V	1	106889			K,	it is a					and the second	See.	н	253			309				
24.	CP 1		CP 2					11.1	1	Ó 🖢				I.	152			154				
Angle	Depth Ar	nale	Depth	a constant	un.	L. /			No.		12	a dinas		J	254			264				
с	114m		115m			14		2					2	К	159							
S	140m		140m			۵.		8	GE.	1			5.	L	155	155		159		138		
2	140m		140m	1	The s		2		1		1	3.9		Total	2363	2251	2979	2510	586	1836	0	
8	95m		97m	1	14 - I		÷.,		181.	at the second			e Fa	Total	2303	2201	2315	201:	500	1030	U	

(2b) 100km Quasi-circle

Alignme	ent S	haft Too	ols	Alignme	ent Location		Geolo	o <mark>gy</mark> Int	ersec	ted by	/ Shaft	s Sh	Shaft Depths					
Choose a	alignment	option		+	and the	1. 1.6					s	haft D	epth (r	m)		Geolo	gy (m)	
100km	quasi-circu	lar 🔻			12 18	5 97 A 18			P	Point	Actual	Min	Mean	Max	Quaternary	Molasse	Urgonian	Calcaire
Tunnel e	levation at	centre:3	27mASL	Sport for	M. C. A. S. S.	Sec.		1979 - 1979 1979 - 1979 - 1979 1979 - 1979 - 1979		Α	214							
\square					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			14.5 24		в	167							
Gradient	Paramete	rs		1 is shi	3.740.8			alle anno 174		С	157							
	Azimuth	(°):	-20	Constant of						D	183							
Slope	e Angle x-x	(%):	.5		1. 2 1					Е	62							
Slope	e Angle y-y	(%):	.15	1/ 50	1 1 1 1 1 1 S	A B		2 15 1		F	333	319	331	341				
		CAL	CULATE	1000	123	20000	a state	10 S 14		G	311	299	319		116	195		
Alignme	nt centre			60 A .			N	1			107							
X: 249	99731	Y: 1	108403	1	(O		- Q - 40			п	197			201				
	CP 1		CP 2	12	A C		8 4 C 10			1	138	138	141	150		126		
Angle	e Depth	Angle	Depth			i la	. 8			J	272							
LHC -64	4° 169n	n 64°	112m		· 🕺 .	× / =	1			К	159							
SPS	154n	i	154m	一般主	16	DH G	A Partan			L	183							
T12	147n	1	154m	124			AR.	1. St.		Total	2377	2248	2386	2519	499	1963	0	0
T18	154n	i	84m		Section 1	$i \in U_{I}$	r: ///											
									_									
Alignment	Drofile																	

hh machine

Feasibility Study – Early cross sections

hh machine

Shaft (vertical) vs. Inclined tunnel?

MB – block @ 1.9 K

1 m diameter "cryostat" envelope Mechanical concept: Collared coils

Number of apertures	(-)	2
Aperture	(mm)	50
Inter-aperture spacing	(mm)	250
Operating current	(kA)	16.4
Operating temperature	(K)	1.9
Nominal field	(T)	16
b ₂ @ 2/3 Aperture	10-4	40.5
b ₃ @ 2/3 Aperture	10-4	2.8
Peak field	(T)	16.3
Margin along the load line	(%)	~20
Stored magnetic energy	(MJ/m)	3.2
Fx (per ½ coil)	(kN/m)	7600
Fy (per ½ coil)	(kN/m)	-3800
Inductance (magnet)	(mH/m)	22.8
Yoke ID	(mm)	-
Yoke OD	(mm)	700
Weight per unit length	(kg/m)	2500
Area of SC	(mm²)	6650
Area of cable low-Jc Nb ₃ Sn	(mm²)	7180
Area of cable high-Jc Nb ₃ Sn	(mm²)	10900
Area of cable Nb-Ti	(mm ²)	4000
Turns Low-, I Nh, Sn per pole		
	-	19
Turns High J Nb ₃ Sn per pole	-	19 41

ARW April 28 2015

Design by D. Schoerling, J. van Nugteren

Power consumption summary

Items	LHC Steady State Power [MW]	FCC-hh Steady State Power [MW]	Comment					
Magnet Circuits	20	86.4	Wall-plug, worked out estimate					
RF	18	32	Rough estimate					
Cryogenics	32	190	To be revisited/refined					
Cooling	20	71	Power in cooling water					
Ventilation	14	56	Rough, 4 x LHC					
Other Machine	2.5	10	Rough, 4 x LHC					
General services	13	52	Rough, 4 x LHC					
Experiments	22	30	(10 + 10 + 5 + 5)					
Total	147.5	527.4						

